Skip to content

Apply Merger Mode AnnotationΒΆ

This example applies a merger mode annotation to a segmentation.

It downloads a sample dataset with a sample annotation. The annotation has been created with "merger mode", where skeleton trees are used to merge segments. Read more about the merger mode in the WEBKNOSSOS documentation. The example then uses the Dataset API and fastremap module for reading, remapping and rewriting the segmentation layer.

This example additionally needs the fastremap package.

from os import environ
from typing import Tuple, cast

import fastremap

import webknossos as wk


def main() -> None:
    ####################################
    # Opening a merger mode annotation #
    ####################################

    nml = wk.Annotation.download(
        "https://webknossos.org/annotations/Explorational/6204d2cd010000db0003db91"
    ).skeleton

    ###############################################
    # Download and open the corresponding dataset #
    ###############################################

    dataset = wk.Dataset.download(
        "l4_sample_dev",
        "scalable_minds",
        path="testoutput/l4_sample_dev",
        webknossos_url="https://webknossos.org",
    )
    in_layer = cast(wk.SegmentationLayer, dataset.get_layer("segmentation"))
    in_mag1 = in_layer.get_mag("1")

    ##############################
    # Compute segment id mapping #
    ##############################

    segment_id_mapping = {}
    for tree in nml.flattened_trees():
        base = None
        for node in tree.nodes:
            segment_id = in_mag1.read(
                absolute_offset=node.position, size=(1, 1, 1)
            ).item()
            if base is None:
                base = segment_id
            segment_id_mapping[segment_id] = base

    print(
        f"Found {len(list(nml.flattened_trees()))} segment id groups with {len(segment_id_mapping)} nodes"
    )
    print(segment_id_mapping)

    ############################
    # Creating an output layer #
    ############################

    out_layer = dataset.add_layer(
        "segmentation_remapped",
        wk.SEGMENTATION_CATEGORY,
        dtype_per_layer=in_layer.dtype_per_layer,
        largest_segment_id=in_layer.largest_segment_id,
    )
    out_mag1 = out_layer.add_mag("1", compress=True)
    out_layer.bounding_box = in_layer.bounding_box

    ###################
    # Apply remapping #
    ###################

    def apply_mapping_for_chunk(args: Tuple[wk.View, wk.View, int]) -> None:
        (in_view, out_view, _) = args
        cube_data = in_view.read()[0]
        fastremap.remap(
            cube_data,
            segment_id_mapping,
            preserve_missing_labels=True,
            in_place=True,
        )
        out_view.write(cube_data)

    in_mag1.for_zipped_chunks(apply_mapping_for_chunk, out_mag1)

    ########################################
    # Optionally, downsample and re-upload #
    ########################################

    if "PYTEST_CURRENT_TEST" not in environ:
        out_layer.downsample()
        dataset.delete_layer("segmentation")
        dataset.upload(
            "l4_sample_remapped",
            layers_to_link=[
                wk.LayerToLink(
                    dataset_name="l4_sample_dev",
                    layer_name="color",
                    organization_id="scalable_minds",
                )
            ],
        )


if __name__ == "__main__":
    main()