compress¶
The compress command allows you to compress a WEBKNOSSOS dataset. It supports compressing specific layers and magnifications (mags) while leveraging parallel execution and customizable distribution strategies.
Usage¶
webknossos compress [OPTIONS] TARGET
Arguments¶
- TARGET
 Path to the WEBKNOSSOS dataset to be compressed.
 Example:/path/to/dataset.
Options¶
- 
--layer-name
 Name of the layer to be compressed. If not provided, all layers will be compressed.
 Example:--layer-name segmentation.
- 
--mag
 Magnifications (mags) to be compressed. Specify as a number or a hyphen-separated string (e.g.,2or2-2-2).
 For multiple mags, use the option multiple times.
 Example:--mag 1 --mag 2 --mag 4-4-2.
- 
--jobs
 Number of processes to be spawned for parallel execution.
 Default: Number of CPU cores.
- 
--distribution-strategy
 Strategy to distribute the task across CPUs or nodes.
 Options:multiprocessing,slurm,kubernetes,sequential. Default:multiprocessing.
- 
--job-resources
 Specify resources for jobs when using the SLURM distribution strategy.
 Example:--job-resources '{"mem": "10M"}'.
Example Commands¶
Compress all layers in a dataset:¶
compress /path/to/dataset
Compress a specific layer:¶
compress --layer-name segmentation /path/to/dataset
segmentation layer in the dataset.
Compress specific magnifications:¶
compress --mag 1 --mag 2 /path/to/dataset
1 and 2 magnifications in all layers of the dataset.
Compress using SLURM with custom job resources:¶
compress --distribution-strategy slurm --job-resources '{"mem": "10M"}' /path/to/dataset
Notes¶
- Ensure that the target dataset path is accessible and properly configured.
- Use the --layer-nameoption to target specific layers for compression.
- For SLURM distribution, make sure the required resources are specified using the --job-resourcesoption.
- This command is designed to handle large datasets efficiently by leveraging parallel processing and customizable distribution strategies.
- Get Help
- Community Forums
- Email Support