Zarr and Dask interoperability
This example shows how to access the underlying Zarr array of a remote dataset. Accessing the Zarr array allows to use other libraries, such as Dask for parallel processing.
import dask.array as da
import webknossos as wk
MAG = wk.Mag("8-8-2")
def main() -> None:
# Remote datasets are read-only, but can be used similar to normal datasets:
l4_sample_dataset = wk.Dataset.open_remote(
"https://webknossos.org/datasets/scalable_minds/l4_sample"
)
layer = l4_sample_dataset.get_layer("color")
mag_view = layer.get_mag(MAG)
zarr_array = mag_view.get_zarr_array()
dask_array = da.from_array(zarr_array, chunks=(1, 256, 256, 256))[
(slice(0, 1),) + mag_view.bounding_box.in_mag(MAG).to_slices()
]
mean_value = dask_array.mean().compute()
print("Mean:", mean_value)
if __name__ == "__main__":
main()